

POWER 746w = 1 hp output work E x I = WATT (true power) E x I = VOLT-AMP (apparent power) E x I x 1.732 = 3 ø volt-amps

POWER FACTOR (PF) PF = W/VA (watts divided by volt-amps) Unity = 1.0



EFFICIENCÝ EFF = Output/Input INPUT = Output/Eff OUTPUT = Input x Eff

OUTPUT is the work (hp) secondary

**INPUT** is the primary

# \$ COST \$ = Watts x Hours Used x Rate per Hour 1000

#### REQUIRED WIRE SIZE FOR AMBIENT TEMPERATURE Load/Correction Factor or Load/Correction Factor x T.310-15b2a

| TO FIND      | DC                 | AC 1ø               | AC 3 Ø                          |
|--------------|--------------------|---------------------|---------------------------------|
| Amperes when | <u>hp x 746</u>    | hp x 746            | <u>hp x 746</u>                 |
| hp is known  | E x Eff            | E x Eff x PF        | 1.732 x E x Eff x PF            |
| Amperes when | <u>kw x 1000</u>   | <u>kw x 1000</u>    | <u>kw x 1000</u>                |
| kw is known  | E                  | E x PF              | 1.732 x E x PF                  |
| Amperes when |                    | <u>kva x 1000</u>   | <u>kva x 1000</u>               |
| kva is known |                    | E                   | E x 1.732                       |
| Kilowatts    | <u>E x l</u>       | <u>E x I X PF</u>   | <u>E x I x PF x 1.732</u>       |
|              | 1000               | 1000                | 1000                            |
| КVА          |                    | E <u>x1</u><br>1000 | <u>E x l x 1.732</u><br>1000    |
| Horsepower   | <u>E x I x Eff</u> | E x I x Eff x PF    | <u>E x I x Eff x PF x 1.732</u> |
|              | 746                | 746                 | 746                             |

To solve an unknown you will need to know two knowns. Put your **finger** on the one **you want to solve** and the other two knowns will show you how to solve it.









- STEP 1 F.L.C. (full load current) T.430.248 1ø T.430.250 3ø
- STEP 2 Motor running overload protection. Thermal protector "heater"
  •430.32(A)(1) MINIMUM SIZE
  •430.32(C) MAXIMUM SIZE
  •Use motor nameplate only for heaters, if given.
- STEP 3 Branch circuit wire size. 430.22 F.L.C. x 125% = Required ampacity Table 310.16 size wire ampacity to insulation.
- STEP 4 Branch circuit overcurrent protection (fuse or CB) shall be selected from Table 430.52. First select the type of motor (1ø, 3ø, AC, DC, wound rotor, code letter) next select type of protection (non-time delay, dualelement, inverse-time CB) now select the percentage from the proper column and multiply it times the F.L.C. of the motor. Use 240.6 to select the standard size the Code permits. •When the value found does not match a standard size, the Code permits the next higher standard size per 430.52 ex.1.
- STEP 5 Feeder conductor size 430.24. Multiply the largest rated motor in F.L.C. by 125% and add the F.L.C. of all the other motors connected to the SAME feeder conductor for required ampacity. T.310.16.
- STEP 6 Feeder overcurrent protection 430.62. Select the largest branch circuit overcurrent device and add all the other motor F.L.C. connected on the SAME feeder to select feeder fuse or CB. The Code does not permit going up to the next size on a feeder, must go down.

When conductors are all the same size (area sq. in.) you can turn to Annex C and determine the size of conduit required. There are 12 Tables so always check the heading of the Table to make sure you have selected the correct Table.

| Table C1• Electrical Metallic Tubing (EMT)Table C1A Electrical Metallic Tubing (EMT)                                                       | Conductors and Fixture Wires<br>Compact Conductors |
|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Table C2• Electrical Nonmetallic Tubing (ENT)         Table C2A Electrical Nonmetallic Tubing (ENT)                                        | Conductors and Fixture Wires<br>Compact Conductors |
| Table C3• Flexible Metallic Conduit (greenfield)                                                                                           | Conductors and Fixture Wires                       |
| Table C3A Flexible Metallic Conduit (greenfield)                                                                                           | Compact Conductors                                 |
| Table C4• Intermediate Metallic Conduit (IMC)                                                                                              | Conductors and Fixture Wires                       |
| Table C4A Intermediate Metallic Conduit (IMC)                                                                                              | Compact Conductors                                 |
| Table C5• Liquidtight Flexible <b>Non</b> metallic Conduit (Type FN<br>Table C5A Liquidtight Flexible <b>Non</b> metallic Conduit (Type FN | MC-B**) Conductors and Fixture Wires               |
| Table C6• Liquidtight Flexible Nonmetallic Conduit (Type FNM                                                                               | C-A**) Conductors and Fixture Wires                |
| Table C6A Liquidtight Flexible Nonmetallic Conduit (Type FN                                                                                | NMC-A**) Compact Conductors                        |
| Table C7• Liquidtight Flexible Metallic Conduit Conduc                                                                                     | ctors and Fixture Wires                            |
| Table C7A Liquidtight Flexible Metallic Conduit                                                                                            | Compact Conductors                                 |
| Table 8• Rigid Metallic Conduit                                                                                                            | Conductors and Fixture Wires                       |
| Table 8A Rigid Metallic Conduit                                                                                                            | Compact Conductors                                 |
| Table 9• Rigid PVC Conduit Schedule <b>80</b>                                                                                              | Conductors and Fixture Wires                       |
| Table 9A Rigid PVC Conduit Schedule <b>80</b>                                                                                              | Compact Conductors                                 |
| Table 10• Rigid PVC Conduit Schedule <b>40</b> and <b>HDPE</b> C                                                                           | Conductors and Fixture Wires                       |
| Table 10A Rigid PVC Conduit Schedule <b>40</b> and <b>HDPE</b>                                                                             | CompactConductors                                  |
| Table 11• Type A Rigid PVC Conduit         Table 11A Type A Rigid PVC Conduit                                                              | Conductors and Fixture Wires<br>Compact Conductors |
| Table 12• Type EB PVC ConduitConductors andTable 12A Type EB PVC ConduitCompact Cond                                                       | l Fixture Wires<br><b>luctors</b>                  |

•This table is for concentric stranded conductors only. Tables "A" are for compact conductors.

\*Types RHH, RHW, and RHW-2 without outer covering.

Definition : Compact stranding is the result of a manufacturing process where the standard conductor is compressed to the extent that the interstices (voids between strand wires) are virtually eliminated.



## SINGLE-PHASE TRANSFORMERS

| Ep = | primary voltage   | Ip = | current in primary   |
|------|-------------------|------|----------------------|
| Es = | secondary voltage | Is = | current in secondary |

| To find <b>primary voltage</b> when the current & secondary voltage are known:      | $\mathbf{Ep} = \underline{\mathbf{Es} \ \mathbf{x} \ \mathbf{Is}}_{\mathbf{Ip}}$  |
|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| To find <b>primary current</b> when the secondary currents are known:               | $\mathbf{Ip} = \frac{\mathbf{Es} \ \mathbf{x} \ \mathbf{Is}}{\mathbf{Ep}}$        |
| To find <b>secondary voltage</b> when the current & primary voltage are known:      | $\mathbf{Es} = \underbrace{\mathbf{Ep} \ \mathbf{x} \ \mathbf{Ip}}_{\mathbf{Is}}$ |
| To find <b>secondary current</b> when the voltages & the primary current are known: | $Is = \frac{Ep \ x \ Ip}{Es}$                                                     |

### **TURNS RATIO**

| Np =            | number of primary turns   | Np |
|-----------------|---------------------------|----|
| Ns =            | number of secondary turns | Ns |
| Ep =            | primary voltage           | Ep |
| $\mathbf{Es} =$ | secondary voltage         | Es |



OFFICE BUILDING

#### COMMERCIAL SERVICE CALCULATION

#### CONDUCTOR SIZING

STEP 1 - Table 220.12 °Lighting load of \_\_\_\_ va x total square footage.

\*Feeder conductor 125% for continuous load.

STEP 2 - T. 220.42 Demand for motel, hospital, warehouse. All others 100%.

STEP 3 - 220.60 Compare heat against A/C, omit smaller.

STEP 4 - 220.14(E) Heavy-duty lampholders @ 600va each.
 220.14(L) Other outlets @ 180va each.
 220.14(H) Multioutlet assemblies each 5' @ 180va.
 220.14(G) •Show window each linear foot @ 200va.

- STEP 5 T.220.44 Demand for receptacle loads over 10kva.
- STEP 6 T. 220.56 Demand for kitchen equipment.
- STEP 7 220.50 Largest motor is to be increased 25%.
- STEP 8 Size the service by dividing the total va by the line voltage. Table 250.66 to size grounding electrode conductor, it cannot be smaller than the neutral.



### DWELLING SERVICE CALCULATION

General Method for a single dwelling unit:

- STEP 1 Table 220.12 Square footage living area x 3va.
- STEP 2 220.52 Small appliance 2 x 1500 va. Laundry 1500 va.
- STEP 3 T.220.42 Apply lighting demand to Steps 1 & 2.
- STEP 4 220.60 Compare heat against A/C, omit smaller.
- STEP 5 220.53 75% demand for 4 or more fixed appliances.
- STEP 6 220.54 Dryers 5kw minimum. T.220.54 demand for 5 or more. Neutral demand 70% per 220.61.
- STEP 7 T.220.55 Demand for cooking eqipment. Neutral 70%.
- STEP 8 220.50 Largest motor is to be increased 25%.
- STEP 9 Size the service by dividing the total va by the line voltage and apply Table 310.15(b)(6).
   Table 250.66 to size grounding electrode conductor.



## DELTA CONNECTED







### THREE-PHASE AC MOTOR TABLE

| нр    | 115v<br>F.L.C. | 230v<br>F.L.C. | 208v<br>F.L.C. | 460v<br>F.L.C. | 115-230-460v<br>volt-amps | 208v<br>volt-amps |
|-------|----------------|----------------|----------------|----------------|---------------------------|-------------------|
| 1/2   | 4.4            | 2.2            | 2.4            | 1.1            | 876                       | 865               |
| 3/4   | 6.4            | 3.2            | 3.5            | 1.6            | 1275                      | 1261              |
| 1     | 8.4            | 4.2            | 4.6            | 2.1            | 1673                      | 1657              |
| 1-1/2 | 12             | 6              | 6.6            | 3              | 2390                      | 2378              |
| 2     | 13.6           | 6.8            | 7.5            | 3.4            | 2709                      | 2702              |
| 3     |                | 9.6            | 10.6           | 4.8            | 3824                      | 3819              |
| 5     |                | 15.2           | 16.7           | 7.6            | 6055                      | 6016              |
| 7-1/2 |                | 22             | 24.2           | 11             | 8764                      | 8718              |
| 10    |                | 28             | 30.8           | 14             | 11154                     | 11096             |
| 15    |                | 42             | 46.2           | 21             | 16731                     | 16644             |
| 20    |                | 54             | 59.4           | 27             | 21511                     | 21399             |
| 25    |                | 68             | 74.8           | 34             | 27088                     | 26947             |
| 30    |                | 80             | 88             | 40             | 31869                     | 31703             |
| 40    |                | 104            | 114.4          | 52             | 41429                     | 41213             |
| 50    |                | 130            | 143            | 65             | 51787                     | 51517             |

Three-phase volt-amps =  $E \times I \times 1.732$ 

Example: What is the valinput for a three-phase 10 HP 208v motor? 208v x 30.8 amps x 1.732 = 11,096va

$$3\phi$$
 va = E x I x 1.732



# SINGLE-PHASE AC MOTOR TABLE

| НР    | 115v<br>F.L.C. | 230v<br>F.L.C. | 208 v<br>F.L.C. | 115-230v<br>F.L.C. | 208v<br>volt-amps |
|-------|----------------|----------------|-----------------|--------------------|-------------------|
| 1/6   | 4.4            | 2.2            | 2.4             | 506                | 499               |
| 1/4   | 5.8            | 2.9            | 3.2             | 667                | 666               |
| 1/3   | 7.2            | 3.6            | 4.0             | 828                | 832               |
| 1/2   | 9.8            | 4.9            | 5.4             | 1127               | 1123              |
| 3/4   | 13.8           | 6.9            | 7.6             | 1587               | 1581              |
| 1     | 16             | 8              | 8.8             | 1840               | 1830              |
| 1-1/2 | 20             | 10             | 11              | 2300               | 2288              |
| 2     | 24             | 12             | 13.2            | 2760               | 2746              |
| 3     | 34             | 17             | 18.7            | 3910               | 3890              |
| 5     | 56             | 28             | 30.8            | 6440               | 6406              |
| 7-1/2 | 80             | 40             | 44              | 9200               | 9152              |
| 10    | 100            | 50             | 55              | 11500              | 11440             |

Single-phase volt-amps =  $E \times I$ 

Example: What is the valiable input for a single-phase 5 HP 208v motor?  $208v \times 30.8 \text{ amps} = 6406va$ 

EXACT K @ 75°C DESIGNED BY TOM HENRY CODE ELECTRICAL CLASSES

| AWG          | Area<br>Circular<br>Mils | Copper<br>Un-coated<br>Resistance | Copper<br>Un-coated<br>EXACT K | Copper<br>Coated<br>Resistance | Copper<br>Coated<br>EXACT K | Aluminum<br>Resistance | Aluminum<br>EXACT K |
|--------------|--------------------------|-----------------------------------|--------------------------------|--------------------------------|-----------------------------|------------------------|---------------------|
| #14 SOLID    | 4110                     | 3.07                              | 12.6177                        | 3.19                           | 13.1109                     | 5.06                   | 20.7966             |
| #14 STRANDED | 4110                     | 3.14                              | 12.9054                        | 3.26                           | 13.3986                     | 5.17                   | 21.2487             |
|              |                          |                                   |                                |                                |                             |                        |                     |
| #12 SOLID    | 6530                     | 1.93                              | 12.6029                        | 2.01                           | 13.1253                     | 3.18                   | 20.7654             |
| #12 STRANDED | 6530                     | 1.98                              | 12.9294                        | 2.05                           | 13.3865                     | 3.25                   | 21.2225             |
|              |                          |                                   |                                |                                |                             |                        |                     |
| #10 SOLID    | 10 380                   | 1,21                              | 12.5598                        | 1.26                           | 13.078                      | 2.00                   | 20.76               |
| #10 STRANDED | 10 380                   | 1.24                              | 12.8712                        | 1.29                           | 13.3902                     | 2.04                   | 21.1752             |
|              |                          |                                   |                                |                                |                             |                        |                     |
| #8 SOLID     | 16 510                   | 0.764                             | 12.61364                       | 0.786                          | 12.97686                    | 1.26                   | 20.8026             |
| #8 STRANDED  | 16 510                   | 0.778                             | 12.84478                       | 0.809                          | 13.35659                    | 1.28                   | 21.1328             |
|              |                          |                                   |                                |                                |                             |                        |                     |
| # 6          | 26 240                   | 0.491                             | 12.88384                       | 0.510                          | 13.3824                     | 0.808                  | 21.20192            |
|              |                          |                                   |                                |                                |                             |                        |                     |
|              | 41 740                   | 0.308                             | 12.85592                       | 0.321                          | 13.39854                    | 0.508                  | 21.20392            |
|              |                          |                                   |                                |                                |                             |                        |                     |
| #3           | 52 620                   | 0.245                             | 12.8919                        | 0.254                          | 13 36548                    | 0.403                  | 21 20586            |
|              | <u></u>                  |                                   |                                |                                |                             |                        |                     |
| #2           | 66 360                   | 0 194                             | 12 87384                       | 0.201                          | 13 33836                    | 0.319                  | 21,16884            |
|              |                          |                                   |                                |                                | 10.00000                    |                        | 21110001            |
|              | 83 690                   | 0 154                             | 12 88826                       | 0.160                          | 13 3004                     | 0.253                  | 21 17357            |
| # I          |                          |                                   | 12.00020                       | 0.100                          | 13.3904                     | 0.235                  | 21.17337            |
|              | 105 000                  | 0.100                             | 10.0000                        | 0.107                          | 10 4110                     | 0.001                  | 01.0050             |
| #170<br>     | 105 600                  | 0.122                             | 12.0032                        | 0.127                          | 13.4112                     | 0.201                  | 21.2230             |
| <u> </u>     | 100 100                  | 0.0007                            | 40.07077                       | 0.101                          | 10.440                      | 0.150                  | 01.1000             |
| #2/0         | 133 100                  | 0.0967                            | 12.87077                       | 0.101                          | 13.443                      | 0.159                  | 21.1629             |
|              |                          |                                   | 10 05010                       |                                |                             |                        |                     |
| #3/0         | 167 800                  | 0.0766                            | 12.85348                       | 0.0797                         | 13.37366                    | 0.126                  | 21.1428             |
|              |                          |                                   |                                |                                |                             |                        |                     |
| #4/0         | 211 600                  | 0.0608                            | 12.86528                       | 0.0626                         | 13.24616                    | 0.100                  | 21.16               |
|              |                          |                                   | L                              |                                |                             |                        |                     |
| 250 kcmil    | 250 000                  | 0.0515                            | 12.875                         | 0.0535                         | 13.375                      | 0.0847                 | 21.175              |
|              |                          |                                   |                                |                                |                             |                        |                     |
| 500 Kcmil    | 500 000                  | 0.0258                            | 12.9                           | 0.0265                         | 13.25                       | 0.0424                 | 21.2                |
| 1000 1 1     | 1 000 000                | 0.0120                            | 12.0                           | 0.0100                         | - 10.0                      | 0.0010                 |                     |
|              |                          | 0.0129                            | 12.9                           | 0.0132                         | <u>13.2</u>                 | 0.0212                 | $L^{21.2}$          |

© 1986 Tom Henry







